人脸识别支付系统科研进展

更新时间:2021-01-09 23:39

  2013年,中国科学院重庆绿色智能技术研究院智能多媒体技术研究中心启动了以人脸识别为核心技术的人脸识别支付方式的研究。

  截止2014年8月,该中心已经完成了人脸识别支付系统的关键性技术研究。该中心全球首创的人脸数据采集阵列,能够从91个角度对人脸同步采集,能对人脸识别影响最大的多变光照、多角度、遮挡等状态进行最优的识别效果。智能多媒体技术研究中心的人脸识别系统已应用在边检站自动通关系统、动态人脸识别考勤机、多属性动态人脸识别系统等。在此基础上,中心研发出了人脸识别移动支付系统,已能够实现支付只需“刷脸卡”。[2]

  教育机构,电信局、广播、传媒,政府机构,国际会议,航空服务业,高档小区,医疗行业

  人脸识别被认为是生物特征识别领域甚至人工智能领域最困难的研究课题之一。人脸识别系统的困难主要是人脸作为生物特征的特点所带来的。

  不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。

  人脸的外形很不稳定,人可以通过脸部的变化产生很多表情,而在不同观察角度,人脸的视觉图像也相差很大,另外,人脸识别还受光照条件(例如白天和夜晚,室内和室外等)、人脸的很多遮盖物(例如口罩、墨镜、头发、胡须等)、年龄等多方面因素的影响。

  在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化(inter-class difference),而称第二类变化为类内变化(intra-class difference)。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。

  现有的人脸识别系统在用户配合、采集条件比较理想的情况下可以取得令人满意的结果。但是,在用户不配合、采集条件不理想的情况下,现有系统的识别率将陡然下降。比如,人脸比对时,与系统中存储的人脸有出入,例如剃了胡子、换了发型、多了眼镜、变了表情都有可能引起比对失败。也就是说,人如果发生较大变化,系统可能就会认证失败。光照、姿态、装饰等,对机器识别人脸都有影响。

  面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:

  首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;

  由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;

  这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;

  这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。

  面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。

  面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:

  该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。

  该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。

  人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。

  刷脸支付设备整体市场2019年比2018年增长了12倍,尽管受到疫情影响,但刷脸支付市场正在复苏。深圳市彬戈科技有限公司获悉,根据微信支付数据,截止至2020年6月,刷脸支付设备相比2019年12月增长了70%。刷脸支付设备在行业场景应用增长速度也非常快,2020年6月与2019年同期相比,其中大屏自助设备增长1倍,自动售货机增长2倍,桌面收银设备增长10倍。

  2020年开始,深圳市彬戈科技有限公司专注于深耕技术升级,时刻紧跟刷脸时代下,扫脸支付系统及设备普及,为广大门店商家提供刷脸设备及技术支持,目前基于华南市场,初步计划拓展全国区域市场,在设备厂家及移动支付官方通道(支付宝及微信)的政策趋势下,人脸识别付款将会迎来新的机会。